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The effect of an insoluble surfactant on the centrifugal and shear instability of a
pair of radially stratified immiscible liquids in the annular gap between concentric
two-fluid Taylor–Couette flow is investigated by a normal-mode linear analysis and
complementary energy analysis. The interface is assumed to be concentric with the
cylinders. The gravitational effects are ignored. Influences of density and viscosity
stratification, surface tension, surfactant concentration distribution and Taylor–
Couette shearing are considered comprehensively. The instability characteristics due
to competition and interaction between various physical instability mechanisms are
of principal concern. Neutral curves with upper and lower branches in the Reynolds
number (Re1)/axial wavenumber (k) plane are obtained. A window of parameters is
identified in which the flow is linearly stable. The Marangoni traction force caused by
the gradient of surfactant concentration stabilizes the axisymmetric perturbations but
initiates an instability corresponding to non-axisymmetric modes in the presence of
basic Couette shearing flow. Co-rotation of the outer cylinder has a stabilizing effect
in expanding the stable region, which dwindles in the counter-rotation situation.

1. Introduction
The swirling flow in the gap between two concentric cylinders, known as Taylor–

Couette flow, has been extensively investigated for homogeneous fluids and gives
a controlled access to different flow regimes, ranging from wavy flows and wavy-
vortex flows to turbulence. The importance of the flow between coaxial cylinders as
a fluid-dynamical paradigm has been well documented in the review by DiPrima &
Swinney (1981). Although this flow has attracted many studies since the ground-
breaking experimental and theoretical work of Taylor (1923), the extension to the
flow of two fluids in the same geometry has received relatively little attention
despite the potential for interesting interactions between centrifugal and interfacial
instabilities. Furthermore, there are a number of interesting questions that arise
from this hypothesis. From a purely fluid dynamical standpoint, the presence of the
interface increases the range of potential flow patterns. On a more applied level,
two-fluid Taylor–Couette flow may be of practical value for mass transfer operations
through the liquid–liquid interface in the bioreactor/bioseparator. The possibility of
such an enhancement has been demonstrated experimentally (Baier & Graham 1998;
Baier, Graham & Lightfoot 2000) and theoretically (Baier & Graham 2000; Yarin,
Gelfgat & Bar-Yoseph 2002).
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The existence of this flow has been anticipated by Schneyer & Berger (1971)
and Joseph, Nguyen & Beavers (1984). Schneyer & Berger (1971) reported a linear
instability analysis of two incompressible, immiscible stratified fluids. The analysis
assumed a stationary outer cylinder, negligible surface tension and gravitational
effects. Joseph et al. (1985) studied the instability of rigid rotation of two centrifugally
stratified fluids between coaxial cylinders while gravity was ignored. They found that
the flow instability is determined by the dimensionless group

Q = (ρ∗
2 − ρ∗

1 )(Ω
∗)2(R∗

s )
3/γ ∗, (1.1)

where ρ∗
1 and ρ∗

2 are the densities of the inner and outer fluid layers. Ω∗ is the
angular velocity of both cylinders, R∗

s is the radial position of the interface and γ ∗

is the surface tension. Linear and energy instability analysis predicts a linearly stable
interface between the two fluids when Q > 1 and is globally stable when Q > 4. The
Couette flow of two immiscible stratified fluids has been computationally explored
by Renardy & Joseph (1985), assuming a stationary outer cylinder. The surface
tension effects were considered. They pointed out that a thin layer of less viscous
fluid next to either cylinder is linearly stable, and that it is possible to have stability
with the less dense fluid lying outside when the centrifugal effect is overcome by an
appropriate combination of surface tension. Reports of corresponding experimental
works were also presented by Joseph and coworkers (Joseph & Renardy 1993) with a
horizontal Couette cell. Recently, a three-dimensional computational fluid dynamics
(CFD) numerical simulation of radially stratified, two-fluid Taylor–Couette flow was
carried out by Vedantam, Joshi & Koganti (2006). To our knowledge, only a small
number of studies have been performed on two-fluid Taylor–Couette flow with a
stationary outer cylinder in the absence of an interfacial surfactant.

In general, the presence of even minute amounts of surfactant on a fluid–fluid
interface can have a substantial effect on the evolution of the interface (Edwards,
Brenner & Wasan (1991)). A number of authors have investigated the effect of an
insoluble surfactant on the instability of a stationary arrangement. Carroll & Lucassen
(1974) studied the formation of droplets from cylindrical oil films experimentally.
Otis et al. (1993) numerically studied the role of surfactant in airway closure and
the corresponding experimental results were presented by Cassidy et al. (1999). It
has been pointed out that the surfactant may reduce the growth rate of interfacial
perturbation. This is caused by the fact that surfactant can lower the surface tension
and diminish the intensity of surface tension, thereby relieving interfacial distortion
(Halpern & Grotberg 1993; Blyth & Pozrikidis 2004a). However, Frenkel & Halpern
(2002), Halpern & Frenkel (2003) and Blyth & Pozrikidis (2004b) recently discovered
that the presence of an insoluble surfactant on a two-dimensional planar sheared
interface induces a Marangoni instability, even with the assumption of Stokes flow. A
Marangoni traction force is induced due to the presence of surfactant concentration
gradient along the interface, which can influence the system instability through its
interaction with the basic shearing flow. The role of the basic shearing flow in
affecting the instability of a surfactant-laden system lies in the interfacial tangential
stress condition and the surfactant transport equation. The former gives rise to a
jump in the shear stress across the interface, which can induce a flow instability.
The latter is primarily due to surface convection, which can rearrange the surfactant
distribution along the interface (Wei 2005, Wei & Rumschitzki 2005). Blyth, Luo &
Pozrikidis (2006) investigated the effect of an insoluble surfactant on the instability
of a core-annular flow of two immiscible fluids by a nonlinear calculation and
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normal-mode linear analysis with only considering the axisymmetric perturbation.
The results revealed that though the Marangoni traction force due to surfactant
concentration gradient was unable to initiate a new type of instability, as in the
case of two-dimensional two-layer channel flow, it destabilized the interface by
broadening the range of growing wavenumbers and by raising the growth rate
of unstable perturbations. As far as we know, the instability of a two-layer Taylor–
Couette flow in the presence of a surfactant on the interface has not been studied
before.

In the present work, we investigate the instability of two immiscible fluids with
different density and viscosity separated by an interface with an insoluble surfactant
and contained between two concentric cylinders that can rotate independently.
Thus, in this system, the flow instabilities contain the following: (i) the Rayleigh–
Taylor instability due to density difference (Sharp 1984; Kull 1991); (ii) the Yih
instability inspired by an interfacial jump in viscosity (Yih 1967; Joseph & Renardy
1993; Charru & Hinch 2000); (iii) the Rayleigh–Tomotika capillary instability,
which is driven by the surface tension (Newhouse & Pozrikidis 1992); (iv) the
Marangoni instability, which is generated by surfactant convection and diffusion
along the interface; and (v) the Taylor–Couette instability, if the inner cylinder
rotates above a critical speed. In order to investigate the interaction of the above
instability mechanisms in more detail, a normal-mode linear stability analysis
was adopted while performing a complementary energy analysis. The instabilities
for both axisymmetric and non-axisymmetric perturbations were investigated
comprehensively. We found that there is an interval of Reynolds number within
which the flow is stable for perturbations with all axial wavenumbers. Our analysis
goes beyond that given by Renardy & Joseph (1985) and Baier & Graham (1998,
2000), because the effects of surface tension, viscosity and density stratifications,
surfactant concentration and rotation of inner and outer cylinders are all
considered.

The content of the paper is as follows. A complete physical and numerical
description of the problem is given in § 2. The linear differential equations about the
linear instability for the small perturbations are obtained by using normal modes. The
energy analysis is also given as a complement. In § 3, the numerical implementation
of this eigenvalue problem is presented together with corresponding verification. The
main results are given in § 4, where the interactions between the above instability
mechanisms are presented. In § 5, the conclusions are presented.

2. Problem formulation
In this paper, we consider the Taylor–Couette flow of two immiscible Newtonian

fluids between two concentric rotating cylinders, whose radii and angular velocities
are R∗

1 , R∗
2 and Ω∗

1 , Ω∗
2 see figure 1). The inner fluid is referred to as fluid 1 with

density ρ∗
1 and dynamic viscosity μ∗

1, whereas the outer fluid is denoted fluid 2 with
density and dynamic viscosity ρ∗

2 and μ∗
2.

The interface is occupied by an insoluble surfactant, which can convect and diffuse
along the interface to alter the local surface tension. The unperturbed, insoluble
surfactant concentration Γ ∗

0 is assumed to be uniform over the interface, with
corresponding surface tension γ ∗

0 . Without loss of generality, the equation of γ ∗

can be expanded in Taylor series around the unperturbed basic state. Because the
linear problem is considered in this paper, the first-order expression of the series is
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Figure 1. Geometric sketch and parameters of the two-fluid Taylor–Couette flow.

retained, with additional terms being truncated as

γ ∗ = γ ∗
0 − β(Γ ∗ − Γ ∗

0 ) + O(Γ ∗ − Γ ∗
0 )2 ≈ γ ∗

0 − β(Γ ∗ − Γ ∗
0 ), (2.1)

where β = −(∂γ ∗/∂Γ ∗)Γ ∗
0
. In this paper, following Halpern & Frenkel (2003), we can

obtain the convection–diffusion equation of surfactant concentration Γ ∗ in cylindrical
coordinates (Appendix A), which can also be derived from the one given by Li &
Pozrikidis (1997).

∂

∂t
(Γ ∗S∗H ) +

∂

∂θ
(u∗

θΓ
∗H ) +

∂

∂z
(u∗

zS
∗Γ ∗H ) = D∗

s

∂

∂θ

⎛⎜⎜⎜⎜⎝ H√
1 +

(
∂S∗

S∗∂θ

)2

∂Γ ∗

S∗∂θ

⎞⎟⎟⎟⎟⎠

+ D∗
s

∂

∂z

⎛⎜⎜⎜⎜⎝ HS∗√
1 +

(
∂S∗

∂z

)2

∂Γ ∗

∂z

⎞⎟⎟⎟⎟⎠, (2.2)

where

H =

√
1 +

(
∂S∗

S∗∂θ

)2

+

(
∂S∗

∂z

)2

. (2.3)

D∗
s is the surface molecular diffusivity of surfactant. S∗ (θ, z) is the local radius of the

interface. We introduce dimensionless variables as

ε =
R∗

s

R∗
2

, η =
R∗

1

R∗
2

, α =
μ∗

1

μ∗
2

, δ =
ρ∗

1

ρ∗
2

, γ =
γ ∗

γ ∗
0

, Γ =
Γ ∗

Γ ∗
0

, S =
S∗

R∗
2

, (2.4)

where R∗
2 , ρ∗

2R
∗
2
2
/μ∗

2 and (μ∗
2)

2/ρ∗
2R

∗
2
2 are adopted as units for space, time, pressure

or stress. R∗
s indicates the radius of initial unperturbed interface. Hereinafter, all

variables will be rendered dimensionless with the above units. The dimensionless
form of (2.1) is

γ = 1 − M (Γ − 1) . (2.5)
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Here, M = βΓ ∗
0 /γ ∗

0 is defined as a dimensionless Marangoni number. The rotation
speeds of inner and outer cylinders are described by the rotation Reynolds numbers
Re1 = ρ∗

2R
∗
1R

∗
2Ω

∗
1/μ

∗
2 and Re2 = ρ∗

2Ω
∗
2R

∗
2
2
/μ∗

2, independently.

2.1. Governing equation and basic shearing flow

The dimensionless continuity and momentum equations in vector form are

∇ · uq = 0, (2.6)

δq(∂t uq + uq · ∇uq) = −∇pq + ∇ · τ q, (2.7)

where q = 1, 2 denotes the stratified fluid regions with δ1 = δ and δ2 = 1. The
cylindrical coordinate system is adopted with the radial, azimuthal and axial directions
being denoted by r , θ and z, respectively. Here, uq = (ur, uθ , uz)q denotes the flow

velocity and τ q = αq

(
∇uq + ∇uq

T
)

is the tensor of viscous shearing stress with α1 = α

and α2 = 1. The boundary condition on the cylinder wall is defined as

uq =
(
0, Req, 0

)
, at r = η, 1. (2.8)

In the absence of perturbation, the piecewise azimuthal Couette shearing velocity
profile of the basic shearing flow is given by

uθ 1 = A1r +
B1

r
, for η < r < ε, (2.9a)

uθ 2 = A2r +
B2

r
, for ε < r < 1. (2.9b)

According to the boundary condition (2.8) and continuous conditions of velocities
and shearing stresses across the interface, the constants can be determined as

A1 =
(α − 1)Re1η + (Re2 − αηRe1)ε

2

(ε2 − η2) + αη2(1 − ε2)
, B1 =

(Re1 − Re2η)ηε2

(ε2 − η2) + αη2(1 − ε2)
, (2.10a)

A2 =
(α − 1)Re2η

2 + (Re2 − αηRe1)ε
2

(ε2 − η2) + αη2(1 − ε2)
, B2 =

α(Re1 − Re2η)ηε2

(ε2 − η2) + αη2(1 − ε2)
. (2.10b)

2.2. Formulation of the linear stability problem

Considering an infinitesimal perturbation to the basic shearing flow, in the normal-
mode analysis, it is assumed to be periodic in the axial and azimuthal directions, with
n and k denoting the respective real wavenumbers⎛⎜⎝ vr

vθ

vz

p

⎞⎟⎠
q

(r, θ, z, t) =

⎛⎜⎝ 0
uθ (r)

0
p (r)

⎞⎟⎠
q

+

⎛⎜⎝Vr (r)
Vθ (r)
Vz (r)
P (r)

⎞⎟⎠
q

ei(nθ+kz+ct). (2.11)

For each fluid q , the linearized governing equations (2.6) and (2.7) around the basic
shearing flow yield (

DVr +
in

r
Vθ + ikVz +

Vr

r

)
q

= 0, (2.12)

[
i

(
c + n

uθ

r

)
Vr − 2uθ

r
Vθ

]
q

= − 1

δq

DPq +
αq

δq

×
(

D2Vr +
1

r
DVr−

n2

r2
Vr − k2Vr − i2n

r2
Vθ − Vr

r2

)
q

, (2.13)
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i

(
c + n

uθ

r

)
Vθ + VrDuθ +

uθ

r
Vr

]
q

= − in

δqr
Pq

+
αq

δq

(
D2Vθ +

1

r
DVθ − n2

r2
Vθ−k2Vθ +

2in

r2
Vr − Vθ

r2

)
q

, (2.14)

[
i

(
c + n

uθ

r

)
Vz

]
q

= − 1

δq

ikPq +
αq

δq

(
D2Vz +

1

r
DVz−

n2

r2
Vz − k2Vz

)
q

. (2.15)

Here, D = ∂/∂r . The interface is also assumed to displace to a new position with
infinitesimal perturbation around the initial unperturbed position. The dimensionless
interface radius S(θ, z) is then described by

S (θ, z) = ε + Xei(nθ+kz+ct). (2.16)

The surfactant distribution with corresponding perturbation to the uniform
surfactant concentration is expressed as

Γ (θ, z) = 1 + Ψ ei(nθ+kz+ct). (2.17)

Linearizing the kinematic condition at the interface (r = ε), we have

icX − Vr + in
uθ

ε
X = 0. (2.18)

The linearized form of the surfactant convection–diffusion equation (2.2) is written as

i
Vr

ε
− n

ε
Vθ − kVz +

[
iDs

(
n2

ε2
+ k2

)
−

(
c +

n

ε
uθ

)]
Ψ = n

(
Duθ

ε
− uθ

ε2

)
X, (2.19)

where Ds = D∗
s ρ

∗
2/μ

∗
2 is the dimensionless interfacial diffusivity of the surfactant. The

following linearized conditions hold at the interface r = ε, which can be written as
(i) Continuity of velocity:

[[Vr ]] = 0, [[Vθ ]] + [[Duθ ]]X = 0, [[Vz]] = 0. (2.20)

(ii) Balance of normal and tangential stresses along r , θ , and z directions:

[[2αDVr − P ]] −
[[

δ
uθ

2

ε

]]
X + J

[
M

ε
Ψ +

X

ε2
−

(
n2

ε2
+ k2

)
X

]
= 0, (2.21a)

[[αDVθ ]] +
in

ε
[[αVr ]] − 1

ε
[[αVθ ]] − in

ε
JMΨ = 0, (2.21b)

[[αDVz]] + ik[[αVr ]] − ikJMΨ = 0. (2.21c)

Here, we define the jump notation [[ · ]] = ( · )2 − ( · )1. Derivation of (2.21a)–(2.21c) is
described in detail in Appendix B. J is the dimensionless surface tension parameter
with definition

J =
ρ∗

2γ
∗
0 R∗

2

(μ∗
2)

2
. (2.22)

Apparently, J is independent of the flow characteristics. We require all the
perturbation velocities to vanish at the cylinder walls. Thus, the boundary conditions
of perturbation velocities are

Vr = Vθ = Vz = 0, at r = η, 1. (2.23)
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From the above equations, we know that the system instability is characterized by
the following nine dimensionless parameters

Re1, Re2, η, ε, α, δ, J, M, Ds. (2.24)

Here, Re1, Re2 indicate the rotation speeds of inner and outer cylinders. η denotes
the ratio of cylinder radius. ε denotes the dimensionless interface position. α and
δ indicate the viscosity and density ratios of the stratified fluids. J denotes the
dimensionless surface tension, M is the Marangoni number and Ds indicates the
dimensionless surfactant interfacial diffusivity.

2.3. Energy analysis

The linear instability of the flow can be determined by the equations listed in the
above section. However, they do not provide information regarding the mechanism
driving the instability. From § 1, we know that the flow characteristics are dominated
by five instability mechanisms. In order to figure out the situations in which instability
is introduced by the surface tension or Reynolds stress, the perturbation energy (Hu &
Joseph 1989) is evaluated. After multiplying (2.13), (2.14) and (2.15) with the complex
conjugates of perturbation velocities, respectively, they are integrated over the flow
regions Ωq (q = 1, 2 indicate the flow regions Ω1 = [η, ε] and Ω2 = [ε, 1]) and added
together. Combining with (2.12) and (2.23), we can obtain

ic

2∑
q=1

∫
Ωq

δq

(
|Vr |2 + |Vθ |2 + |Vz|2

)
q
rdr + i

2∑
q=1

∫
Ωq

δqn
[
uθ

(
|Vr |2 + |Vθ |2 + |Vz|2

)]
q
dr

=

2∑
q=1

∫
Ωq

δq

[
2
uθ

r
Vθ Ṽr −

(
Duθ +

uθ

r

)
VrṼθ

]
q

rdr

−
2∑

q=1

∫
Ωq

αq

[
2

(
|Vr |2 +

∣∣∣∣ inVθ + Vr

r

∣∣∣∣2 + |kVz|2
)

+

∣∣∣∣DVθ +
inVr − Vθ

r

∣∣∣∣2

+

∣∣∣∣ inVz

r
+ ikVθ

∣∣∣∣2 + |DVz + ikVr |2
]

q

rdr

−[[−Ṽr P + 2αṼr DVr + αṼθDVθ + α
in

r
ṼθVr − α

ṼθVθ

r
+ αikṼz Vr + αṼz DVz]]r=ε,

(2.25)

Here, ‘ ∼ ’ denotes the complex conjugate and |Vr |2 = Ṽr Vr , |Vθ |2 = ṼθVθ , . . . . Each
term in (2.25) is some kind of energy; thus, it represents the energy balance for the
flow perturbation. The real part of (2.25) governs the energy growth rate of small
perturbations, and it can be separated into the following four terms

Ė = Θ − Φ + I, (2.26)

where

Ė = λ

2∑
q=1

∫
Ωq

δq

(
|Vr |2 + |Vθ |2 + |Vz|2

)
q
rdr, (2.27)
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Θ =

2∑
q=1

Re

{∫
Ωq

δq

[
2
uθ

r
Vθ Ṽr −

(
Duθ +

uθ

r

)
VrṼθ

]
q

rdr

}
, (2.28)

Φ =

2∑
q=1

∫
Ωq

αq

[
2

(
|DVr |2 +

∣∣∣∣ inVθ + Vr

r

∣∣∣∣2 + |kVz|2
)

+

∣∣∣∣DVθ +
inVr − Vθ

r

∣∣∣∣2

+

∣∣∣∣ inVz

r
+ ikVθ

∣∣∣∣2 + |DVz + ikVr |2
]

q

rdr. (2.29)

Here, λ = −Im(c) is the growth rate of perturbation, Ė is the rate of change of
kinetic energy of the perturbed flow, Θ is the rate at which energy is transferred
from the parallel basic shearing flow to the perturbed flow through Reynolds stress,
Φ is the rate of viscous dissipation and I is the rate at which energy is supplied at
the interface. Combining linearized equations (2.18)–(2.20) and (2.21a)–(2.21c) held
at the interface r = ε with surfactant diffusivity Ds being ignored, I can be written
as

I = I1 + I2 + I3 + I4 + I5, (2.30)

where

I1 = λ
|Vr |2

|C|2
(δ − 1) u2

θ , (2.31)

I2 = λε
|Vr |2

|C|2
(

1 − n2

ε2
− k2

)
J, (2.32)

I3 = n
JM

|C|4
(

Duθ

ε
− uθ

ε2

)
Re

[(
i |Vr |2 + nṼθVr + kεṼz Vr

)
C̃ C̃

]
− JM

ε |C|2
|(Vr + inVθ + ikεVz)|2 λ, (2.33)

I4 = − (α − 1)

α |C|2
(

Duθ − uθ

ε

)[
Re

(
nC |Vr |2

)
+ Im

(
εCṼr DVθ − CṼr Vθ

)]
, (2.34)

I5 = −n
(α − 1)

α |C|2
JM

(
Duθ − uθ

ε

)
Re

(
n

ε
Ṽr Vθ + kṼr Vz

)
− n2 (α − 1) |Vr |2

εα |C|4
JM

(
Duθ − uθ

ε

)2

λ. (2.35)

Here, C = c + nuθ/ε and all the perturbation velocities are defined at the interface
r = ε in the flow region Ω2. Note that I1 represents the energy supplied at the
interface due to the density stratification. If I1 < 0, the flow is stabilized for δ < 1,
which means the flow is more stable with the denser fluid coating the outer cylinder.
In addition, I2 gives the energy supplied due to surface tension. Similar to Hu &
Joseph (1989) and Kwak & Pozrikidis (2001), the surface tension destabilizes (I2 > 0)
long axisymmetric (n = 0, k < 1/ε) perturbation waves and stabilizes (I2 < 0) short
(k > 1/ε) or non-axisymmetric (n �= 0) perturbation waves. Furthermore, I3 denotes
the energy supplied due to the effects of the surfactant. In the absence of basic
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shearing flow (uθ = 0), I3 < 0, which indicates that the effect of surface tension
can be slowed down due to the existence of surfactant. In the presence of basic
shearing flow, the consequence of using surfactant is the development of surfactant
concentration gradient and accompanying Marangoni traction force, which can also
supply energy to perturbed flow. For n = 0, the first term of I3 equals 0. This
indicates that the basic shearing flow has few effects on the axisymmetric (n = 0)
mode induced by Marangoni traction force. Moreover, I4, which is proportional to
the shearing strain of basic shearing flow, is the energy supplied due to viscosity jump
across the interface and I5, which is zero for n = 0, represents the energy supplied due
to the coupling effect of Marangoni traction force and interfacial friction induced by
viscosity stratification.

3. Numerical implementation
We employ a spectral collocation method based on Chebyshev polynomials to

discretize the perturbation equations (2.12)–(2.23). Each of the two fluid regions,
Ω1 = [η, ε] and Ω2 = [ε, 1], is mapped onto the standard interval −1 � xq � 1
(q = 1, 2) using the following linear transformation:

x1 =
2r − ε − η

ε − η
for Ω1, x2 =

2r − ε − 1

1 − ε
for Ω2. (3.1)

In order to cluster the grid points near the interface, the Gauss–Lobatto points
are adopted (Govindarajan 2004). In the non-staggered collocation method, artificial
boundary conditions for the pressure at cylinder walls are needed. It is normally
derived from the radial momentum equation (2.13), evaluated at the boundary walls,
as

DP = αD2Vr at r = η, DP = D2Vr at r = 1. (3.2)

Khorrami (1991) has shown that a non-staggered grid with the above boundary
conditions does not result in a loss of accuracy, as compared to a staggered grid
without pressure boundary conditions. Upon discretization, the system of linear
equations can be written in matrix form as a generalized complex eigenvalue system,

Lx = ic Qx, (3.3)

where the vector x contains the real and imaginary parts of small perturbations,

x = (Vr, Vθ , Vz, P, X, Ψ )T , (3.4)

and L and Q are constant matrices, which depend on the basic shearing flow. The
growth rate (λ = −Im(c)) of the perturbation amplitude can be written in the explicit
functional form

λ = λ (Re1, Re2, η, ε, α, δ, J, M, Ds, k, n) . (3.5)

It has been known that the flow system is unstable while the growth rate of the most
unstable mode is positive. The converse is true for the negative growth rate. In this
paper, the resulting algebraic generalized eigenvalue problem (3.3) is solved by using
the software package MATLAB based on the QZ algorithm. To filter out spurious
eigenmodes, the number of collocation points is increased until genuine modes are
clearly identified. The convergence of the numerical method is shown in table 1, where
N is the number of collocation points for each fluid region along a radial direction.
It shows that N = 21, which is adopted in the rest of paper unless specially stated,
is sufficient for the computation of linear stability. The accuracy of the numerical
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N −Im(c) Re(c)

6 0.07690273 −25.62240581
11 0.08230771 −25.62472117
16 0.08230736 −25.62472144
21 0.08230736 −25.62472144
26 0.08230736 −25.62472144

Table 1. Eigenvalue corresponds to the most unstable mode for a different number of
collocation point, with k = 1.0, n = 1.0, η = 0.4, ε = 0.7, δ = 1.0, α = 2.0, J = 103,
M = 1.0 and Ds = 0, whereas Re1 = 50.0 and Re2 = −10.0.
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Figure 2. Comparison between the results (figure 1) of Renardy & Joseph (1985) and the
present work in the absence of a surfactant, with η = 0.5, δ = 1.0, α = 0.4, J = 0, M = 0, the
azimuthal mode n = 4, 10 and axial wavenumber k = 0.1.

method is verified by comparing the results with those available for Couette flow
of two fluids between concentric cylinders without a surfactant (Renardy & Joseph
1985) and confirming excellent agreement (see figure 2).

4. Results and discussion
4.1. Effect of surface tension on instability

For completeness, we begin by considering the perturbation flows driven by a
perturbed pressure induced by surface tension via a deflection of cylindrical interface
in the absence of surfactant and differences of density and viscosity across the
interface. The flow instability with stationary outer cylinder is studied first. Figure 3
shows neutral stability curves delineating the boundary between stable and unstable
regions in the Re1 (Reynolds number)–k (wavenumber) plane with parameters
Re2 = 0.0, η = 0.4, ε = 0.6, δ = 1.0, α = 1.0 and M = 0.0. A neutral condition follows
by equating perturbation growth rate λ to zero. The flow contained in the zone with
growth rate λ > 0 is unstable, whereas the converse is true in the zone with λ < 0.
Numbers marked on the curve denote the critical value of azimuthal mode n. The
points corresponding to the change in n are distinguished by vertical bars. For J = 0,
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Figure 3. Neutral stability curves on the Re1–k plane with J as a parameter, for Re2 = 0.0,
η = 0.4, ε = 0.6, δ = 1.0, α = 1.0, M = 0.0 and Ds = 0.0.

in the absence of surface tension, flow instability is dominated by the Taylor–Couette
instability mechanism shown in the solid line, with an unstable region above the line.
The unstable perturbation modes start at critical Reynolds number Re1 = 112.5 at
k = 5.32 with azimuthal mode n = 0. For J > 0, however, as noted in § 2.3, surface
tension destabilizes the long axisymmetric perturbation waves (n = 0, k < 1/ε).
The critical axial wavenumber (k = 1/ε), corresponding to the Rayleigh–Tomotika
threshold, depends only on the position of the interface. This explains why the neutral
curves are nearly coincident for different J (J > 0) at a low Reynolds number, where
the flow instabilities are dominated by the axisymmetric (n = 0) capillary mode.
As Re1 increases further, flow instability is dominated by the interaction of Taylor–
Couette and capillary instability mechanisms. The critical azimuthal mode switches
from axisymmetric mode (n = 0) to non-axisymmetric mode (n = 1 or 2). Because
the surface tension stabilizes the non-axisymmetric and short-wave modes, the critical
azimuthal mode switches to n = 0 while the axial wavenumber k is large enough (e.g.
k > 4.10 for J = 5 × 103). The flow instability is dominated by the Taylor–Couette
instability mechanism. The neutral curve for J = 103 tends to be nearly coincident
with that for J = 5 × 103 as k > 7.58. In figure 3, no interval of Reynolds number
Re1, in which the flow is linear stable for all range of k, can be found in the presence
of surface tension. The flow is constantly linearly unstable for J > 0.

4.2. Interaction between surface tension and density difference

In this section, the density difference between fluid 1 and 2 is considered. The flow
instability is dominated by the influences of surface tension, density stratification and
Reynolds stresses of basic shearing flow. The Yih and Marangoni instabilities due to
viscosity stratification and surfactant concentration gradient are ignored with α = 1.0
and M = 0. From (2.31) in § 2.3, we know the density stratification plays a stabilizing
role with the denser fluid coating the outer cylinder. Thus, a stable flow is possible
to be achieved with δ < 1.0, even if the surface tension is considered. From § 2.2,
we know that the influence of density stratification is introduced through (2.21a)
corresponding to the balance of normal stress at the interface (r = ε). Combining
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with n = 0, it can be written as

[[2DVr − P ]] +

[
J

1 − ε2k2

ε2
− (1 − δ)

uθ (ε)
2

ε

]
X = 0, (4.1)

where uθ (ε) is the shearing velocity of basic flow at the interface. With the second
term in (4.1) equalling zero, the influence of surface tension can be counterbalanced
by the density stratification with the expression of corresponding interfacial velocity
of basic shearing flow uc

θ (ε):

uc
θ (ε) =

√
J

1 − ε2k2

ε(1 − δ)
. (4.2)

According to (2.9a) or (2.9b) with r = ε and Re2 = 0, the corresponding rotation
Reynolds number of the inner cylinder can be obtained as

Rec
1 =

√
J

1 − δ

1 − ε2k2

ε

ε

1 − ε2

1 − η2

η
. (4.3)

For k < 1/ε, Rec
1 is available only if δ < 1.0. This indicates that the unstable modes

caused by surface tension are possibly stabilized only if the denser fluid coats the
outer cylinder. Renardy & Joseph (1985) concluded that it was possible to achieve
stability with a denser fluid coating the inner cylinder when the centrifugal effect was
overcome by a combination of interfacial surface tension. This conflict is caused by the
fact that, according to current research, the contribution of viscosity stratification is
ignored by setting α = 1.0 (fluids 1 and 2 have the same viscosity). But in Renardy &
Joseph (1985), though it was engaged to consider the influence of surface tension
and density difference on the flow instability, the effect of viscosity stratification was
also included by assuming that the lower viscosity fluid is coating the outer cylinder.
Therefore, the stable modes, which are considered to be caused by the interaction of
surface tension and density stratification in Renardy & Joseph (1985), are actually
attributed to the interaction of surface tension and viscosity stratification.

Figure 4 shows neutral stability curves with η = 0.4, ε = 0.6, δ = 0.5 and J

as a parameter. The axisymmetric unstable modes caused by surface tension are
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stabilized while the inner cylinder rotates with moderate speed. The unstable domain
is separated into two regions, corresponding to a neutral curve with upper and lower
branches. The modes constrained in the lower branch are unstable, corresponding to
the capillary instability. The profile of the lower branch can be described by (4.3).
For J = 103 and in the limit k → 0, we have Re1 = 113.7 from (4.3), at which
the lower branch of the neutral curve joins the vertical axis. On the other hand,
the unstable perturbation modes to the upper branch start at the critical Reynolds
number Re1 = 234.5 with k = 3.21. Thus, as 113.7 < Re1 < 234.5, the flow is linearly
stable for perturbation with all axial wavenumbers. Figure 5 illustrates the influence
of the interface position on the neutral curves. An interval of Reynolds number
Re1 within which the flow is linearly stable for all axial wavenumbers can also be
identified (e.g. 88.5 < Re1 < 144.3 for ε = 0.5). However, as the interface is closed to
the outer cylinder (ε → 1.0), from (4.3) we know that the critical Reynolds number,
at which the capillary instability can be suppressed in the limit k → 0, is Re1 → ∞.
Thus, as demonstrated in figure 5, for example ε = 0.9, no interval of Re1 for stable
flow can be found anymore.

4.3. Interaction between surface tension and viscosity difference

Renardy & Joseph (1985) studied the stability of two-fluid Taylor–Couette flow with
viscosity stratification and surface tension. The flow with a small Reynolds number
was considered. They concluded that a thin layer of the less viscous fluid next to either
cylinder is linearly stable in the presence of surface tension. In this section, we shall
show that the stable range of interface radii will be extended due to the influence of
basic shearing flow. An interval of rotation Reynolds number Re1, within which the
flow is linearly stable, can be identified. Hooper & Boyd (1983) studied the Couette
flow of two fluids of different viscosity and found that when viscosity, rather than
inertia, is the dominant physical effect, the instability arises at the interface between
the two fluids and occurs for short wavelengths. Figure 6(a) shows the growth rate of
perturbation versus interface position in the absence of surface tension (J = 0) with
less viscous fluid coating the inner cylinder (α = 0.5). For small Reynolds number
Re1 = 1.0, the results suggest that the stable range of interface radii is reduced with
an increase of azimuthal mode n. This means that the less viscous fluid should be very
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thin to keep the flow stable. In figure 6(b), the growth rate is plotted against Re1 in
the absence of surface tension with α = 0.5 and k = 1.0. As Re1 is raised, growth rates
of axisymmetric mode (n = 0) are negative and they monotonically decrease. The
converse is true for the perturbation with large azimuthal modes (e.g. n = 10, 20). This
indicates that the viscosity stratification can stabilize the axisymmetric perturbation
waves but destabilize the non-axisymmetric perturbation waves with large azimuthal
mode n in the presence of basic shearing flow.

Figure 7 shows the influence of rotation Reynolds number Re1 on the growth rate
with J = 10. As we expected, for Re1 = 1.0 in figure 7(a) the non-axisymmetric
mode of perturbation is stabilized, whereas the axisymmetric mode is destabilized
due to the effect of surface tension. The flow is constantly unstable wherever the
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interface locates. However, when Re1 is raised to 50.0 in figure 7(b), the axisymmetric
mode (n = 0) displayed is stable while the interface is close to the inner cylinder
with ε < 0.53. The stable range of the interface radii is extended with increase of n,
which is totally opposite to what is occurring in figure 6(a). This result suggests that
the axisymmetric mode of perturbation is stabilized by viscosity stratification in the
presence of basic shearing flow, and the non-axisymmetric modes are stabilized by
surface tension synchronously. Similar results can also be received with less viscous
fluid coating the outer cylinder (α > 2.0).

Figure 8 shows neutral stability curves with J as a parameter. Similar to figure 4, the
unstable domain is separated into two regions with upper and lower neutral branches.
Within the lower branch, flow instability is dominated by the capillary mode (n = 0),
which can be stabilized with moderate Re1. As illustrated in figure 8(a), for J = 10,
ε = 0.5 and α = 0.5, shown with a solid line, the corresponding lower branch joins
the vertical axis at Re1 = 13.8. The unstable perturbation mode to the upper branch,
starting at Re1 = 73.8, corresponds to a non-axisymmetric short wave instability
(n = 1, k = 4.61). Therefore, as 13.8 < Re1 < 73.8, the flow is linearly stable for
perturbation with all axial wavenumbers. In the limit k → 0.0, the upper branch
joins the vertical axis at Re1 = 138.7, corresponding to a non-axisymmetric (n = 3)
long-wave instability. Physically, this is the consequence of the interaction of capillary
instability and Yih instability mechanisms. Similar remarks can be made for J = 100,
shown in a dash-dotted line. The lower branch joins the vertical axis at Re1 = 43.9,
and the unstable mode to the upper branch starts at Re1 = 116.5. The main effect
of raising the surface tension is to elevate the neutral curves, thereby expanding
the range of stable Reynolds number. In this sense, increasing J has a stabilizing
influence. Figure 8(b) illustrates the neutral curves with the less viscous fluid coating
the outer cylinder for ε = 0.7 and α = 2.0. Similar to figure 8(a), the range of Re1, in
which the flow is stable, can also be identified.

4.4. Marangoni effect on flow instability

In general, the presence of even minute amounts of surfactant on a fluid–fluid interface
can have a substantial effect on the evolution of the interface (Edwards et al. 1991). In
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Figure 9. Growth rate λ of capillary and Marangoni modes vs. axial wavenumber k at
quiescent basic state (Re1 = Re2 = 0) with Marangoni number M as a parameter, for (a)
axisymmetric perturbation n = 0 and (b) non-axisymmetric perturbation n = 1, and for
η = 0.4, ε = 0.6, δ = 1.0, α = 1.0, J = 103 and Ds = 0.0.

this section, we discuss the influence of surfactant on the flow instability characteristics.
The influences of density and viscosity stratification are ignored first by setting
α = 1.0, δ = 1.0. For the quiescent basic state, the flow instability is controlled by
the capillary and Marangoni instability mechanisms. Two most important modes can
be identified. As illustrated in figure 9(a), the first mode (referred to as the capillary
mode), which is unstable for the axisymmetric long perturbation waves, dominates
the flow instability. The growth rate of the capillary mode is reduced with an increase
of Marangoni number M . This physically indicates that the flow instability is relieved
as surfactant is introduced (Otis et al. 1993; Cassidy et al. 1999; Kwak & Pozrikidis
2001). The second mode, referred to as Marangoni mode, is constantly stable with a
negative growth rate. In figure 9(b), for non-axisymmetric perturbations (n = 1), the
growth rates of both capillary and Marangoni modes are negative. Thus, for quiescent
basic state, the surfactant is responsible for introducing a stable mode and the flow
instability is still dominated by capillary modes. This can also be demonstrated from
an energy viewpoint. In § 2.3, I3 is the energy supplied corresponding to the surfactant.
For quiescent basic state (Re1 = Re2 = 0), we know that I3 is always negative. Thus,
the surfactant plays a role in relieving the flow instability.

Figure 10 illustrates the effect of basic shearing flow on the growth rate of
perturbation with k = 1.0, ε = 0.6 and J = 103. Results are shown both for
clean (M = 0.0) and contaminated (M = 0.1 and M = 1.0) interfaces. At a non-zero
Reynolds number, an infinite number of normal modes arise. The dominant capillary
and Marangoni modes can be identified by parameter continuation with respect to the
Reynolds number. In figure 10(a), for axisymmetric (n = 0) perturbations, the growth
rates of capillary modes are positive over the range of Reynolds numbers considered,
whereas the growth rates of Marangoni modes are negative. The basic shearing flow
has few effects on the growth rates of perturbations. This behaviour is also entirely
consistent with the energy analysis in § 2.3. For n = 0, I3 is always negative and
independent of the basic shearing flow. In figure 10(b), for non-axisymmetric (n = 1)
perturbations with k = 1.0, the growth rates of capillary modes are negative, and
for the contaminated interface (e.g. M = 0.1), they rapidly decrease towards negative
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Figure 11. Growth rate of non-axisymmetric Marangoni mode (n = 1) vs. (a) rotation
Reynolds number Re1 with k as a parameter and (b) axial wavenumber k with Re1 as a
parameter, for Re2 = 0.0, η = 0.4, ε = 0.6, δ = 1.0, α = 1.0, J = 103 and Ds = 0.0.

infinity as Re1 increases. However, the growth rate of the Marangoni mode is raised
monotonically as Re1 increases. For M = 0.1, the corresponding growth rate changes
to positive at Re1 = 28.7, and it shifts to Re1 = 35.2 for M = 1.0. As Re1 increases
further, the flow instability is then dominated by the Marangoni mode. Similar results
are also shown in figure 11(a). For small k, λ changes to positive even if the rotation
Reynolds number Re1 is close to zero (e.g. λ > 0, whereas Re1 > 2.4 for k = 0.1).
As illustrated in figure 11(b), the non-axisymmetric Marangoni modes with small k

are more unstable than those with large k in the presence of basic shearing flow.
Physically, this indicates that the presence of surfactant on the sheared interface
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Re1: 20.0 28.7 38.0

λ 1.171 −3.808 1.174 −3.812 1.179 −3.816
arg(Ψ/V )/π −0.500 0.500 −0.500 0.500 −0.500 0.500

Table 2. Property of the capillary (left-hand columns) and Marangoni (right-hand columns)
instability with axisymmetric (n = 0) perturbations, for k = 1.0, η = 0.4, ε = 0.6, δ = 1.0,
α = 1.0, J = 103, M = 0.1 and Ds = 0.0, with Re1 as a parameter.

induces a non-axisymmetric long-wave Marangoni instability, even if it is with small
Re1.

It is interesting to examine in some detail the effect of Marangoni traction force
on the flow instability in the presence of basic shearing flow. We know that the
Marangoni traction force is induced by the surfactant concentration gradient along
the interface. Substituting (2.18) into (2.19) with Ds = 0.0, the linearized surfactant
convection–diffusion equation, which defines the perturbation of surfactant, can be
modified as(

c +
n

ε
uθ

)
Ψ = −n

ε
Vθ − kVz − n

(
Duθ

ε
− uθ

ε2

)
X − 1

ε

(
c +

n

ε
uθ

)
X. (4.4)

The first two terms on the right-hand side of (4.4) represent the surfactant convection
caused by the interfacial perturbation velocity. The third term expresses the correction
to the advection of unperturbed surfactant concentration by the change in the basic
shearing flow’s interfacial velocity, owing to interface displacement. The fourth term
corresponds to prescribed surfactant perturbation deriving from the deflection of the
cylindrical interface.

For n = 0, the third term on right-hand side of (4.4) is zero. The basic shearing
flow tends to have little influence. The surfactant concentration is then controlled by
the superposition of interfacial perturbation velocity (V = nVθ/ε + kVz, at r = ε)
and deflection of cylindrical interface. The capillary mode, which is unstable with
λ > 0 for k = 1.0, corresponds to an eigenfunction where the phase shift of surfactant
perturbation relative to the interfacial perturbation velocity expressed by arg(Ψ/V )/π
is −0.5, as listed in table 2. The sketch of relative wave configuration is shown in
figure 12(a). The surfactant level is high at crest point A, whereas the converse is
true at trough points B and C. The local interfacial perturbation flow is shown
with arrows, which drains surfactant from the interface trough and pushes it toward
the crest. The resulting surfactant gradient generates Marangoni traction forces that
pull the interface back toward the trough, thereby opposing the capillary-induced
motion. Thus, the surfactant plays a role in relieving the capillary instability. For the
Marangoni mode as listed in table 2, however, the phase shift arg(Ψ/V )/π equals 0.5.
The local interfacial perturbation flow direction is totally reversed with surfactant
convecting from crest A to trough B , as depicted in figure 12(b). The surfactant
concentration gradient is then relieved. Therefore, the Marangoni mode is stable with
the negative growth rate.

For n = 1, according to (4.4), we know that the basic shearing flow has a
role in rearranging the surfactant. The concentration gradient is controlled by
two competing mechanisms: (i) the basic shearing flow-induced steepening of the
surfactant concentration and (ii) local interfacial perturbation flow depletion of the
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Re1: 20.0 28.7 38.0

λ −16.552 −1.074 −17.957 0.000 −19.611 1.175
arg(Ψ/V )/π 0.486 0.516 0.479 0.502 0.469 0.492

|ξ | 0.271 0.908 0.365 0.990 0.461 1.077
arg(ξ )/π −0.369 0.928 −0.335 0.913 −0.305 0.904

Table 3. Property of the capillary (left-hand columns) and Marangoni (right-hand columns)
instability with non-axisymmetric (n = 1) perturbations, for k = 1.0, η = 0.4, ε = 0.6, δ = 1.0,
α = 1.0, J = 103, M = 0.1 and Ds = 0.0, with Re1 as a parameter.
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Figure 12. Sketch of the Marangoni flows (shown as arrows) of the (a) capillary mode and
(b) Marangoni mode corresponding to table 2.

surfactant concentration. For convenience, we introduce the complex group

ξ =
n (Duθ − uθ/ε)

nVθ + εkVz

X, (4.5)

which expresses the phase shift and relative amplitude of surfactant concentration
perturbations corresponding to the above two effects. In table 3, for capillary mode
with the given set of parameters, the phase-shift arg(Ψ/V )/π is close to 0.5 and the
relative amplitude expressed by |ξ | is less than 0.5. This denotes that the surfactant
concentration is dominated by local interfacial perturbation flow, which convects the
surfactant from the region of high concentration to the region of low concentration.
The concentration gradient is then relieved and the mode is stable. Similar behaviour
can also be observed for the Marangoni mode with small Re1. The relative amplitude
|ξ | is less than 1.0 for the stable mode. However, as Re1 increases, the relative
amplitude |ξ | is raised larger than 1.0. Significant gradient of surfactant concentration
is then induced by basic shearing flow, and corresponding Marangoni traction force
becomes strong enough to destabilize the flow perturbations. The growth rate of the
Marangoni mode is then positive, as listed in table 3. It is worth noting that the
perturbation in the basic shearing flow’s interfacial velocity due to the displacement
of the interface acts to advection surfactant from the crest to the trough, thereby
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Figure 13. Sketch of (a) Marangoni flows (shown as arrows) and (b) interfacial wave of the
Marangoni mode corresponding to table 3.
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Figure 14. Growth rate vs. interface position ε with (a) Re1 as a parameter and J = 103 and
(b) J as a parameter and Re1 = 10.0, n = 1.0, for Re2 = 0.0, k = 1.0, η = 0.4, δ = 1.0, α = 1.0,
M = 0.1 and Ds = 0.0.

introducing a phase-left between the interfacial and surfactant perturbation waves,
as illustrated in figure 13(a). The interfacial perturbation wave is shown as a solid
line and the surfactant perturbation wave is shown as a broken line. The local
interfacial perturbation flow is shown as arrows, which tends to relieve the surfactant
concentration from high-level point A to low-level points B and C. Figure 13(b)
illustrates a qualitative approximation of a typical interfacial perturbation wave
(corkscrew wave) corresponding to an unstable Marangoni mode. The wave travels
in both axial and azimuthal directions.

Figure 14 illustrates the relation between the growth rate of the non-axisymmetric
perturbation long wave (k = 1.0, n �= 0) and the interface position. In figure 14(a),
the growth rates are elevated with an increase Re1. The modes displayed are unstable



Instability of two-fluid Taylor–Couette flow 377

k

R
e 1

0 2.00 4.00 6.00 8.00 10.00 12.00

50.0

100.0

150.0

200.0

250.0

300.0

350.0
α = 0.5, δ = 0.5

0.5, 1.0
1.0, 0.5
1.0, 1.0

λ > 0

λ < 0λ > 0

3

1

1

1

1

1

4
5

2

10

0

1
2

1

Figure 15. Neutral stability curves on the Re1–k plane with α as a parameter for Re2 = 0.0,
η = 0.4, ε = 0.5, δ = 0.5, J = 100, M = 0.1 and Ds = 0.0.

as ε is close to 0.4. This indicates that the corresponding modes of non-axisymmetric
perturbations are more unstable when the interface is close to the inner cylinder.
Similar results can also be found in figure 14(b), which shows the stabilizing effects
of surface tension on the non-axisymmetric perturbations.

In the above case, the influences of viscosity and density stratification are
ignored. Note that the non-axisymmetric long perturbation waves are destabilized
by Marangoni traction force in the presence of basic shearing flow. In figure 15, for
α = 1.0 and δ = 1.0, as shown with the short dashed line, the neutral curve begins
at Re1 = 0 and k = 2.0, corresponding to the capillary mode (n = 0), and it switches
to the Marangoni mode (n = 1, 2, 3) as Re1 increases. The flow is unstable for the
modes on the left upper of the neutral curve. No interval of Re1 for stable flow can
be found and the flow is constantly unstable. Now let us consider the case in the
presence of viscosity stratification with denser fluid coating the outer cylinder. From
§ 4.2 and 4.3, we know that for δ < 1.0, the density stratification plays a stabilizing
role in counterbalancing the pressure perturbations induced by surface tension, and
the interfacial friction due to viscosity stratification can stabilize the perturbation with
small azimuthal mode n in the presence of basic shearing flow. This tends to suggest
that the unstable capillary and Marangoni modes can be stabilized at moderate Re1,
as plotted in figure 15 with the solid line. Similar to figure 8(a), the unstable domain
is separated into two regions. An interval of Re1 (78.9 < Re1 < 161.0), within which
the flow is linearly stable, can evidently be identified. The flow contained within the
lower branch corresponds to the instability caused by surface tension and Marangoni
traction force. As k → 0, the upper branch starts at Re1 = 177.9 with critical
azimuthal mode n = 4, which corresponds to the instability induced by interfacial
friction.

It is well known that the surfactant diffusion plays a role in homogenizing the
concentration distribution. Thus, the Marangoni traction force, which is caused by
the gradient of surfactant concentration along the interface, can be relieved with an
increase in surfactant diffusivity Ds . Kwak & Pozrikidis (2001) and Luo & Pozrikidis
(2006) introduce a dimensionless property group to express the surfactant diffusivity,
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Figure 17. Neutral stability curves on the Re1–Re2 plane with J = 500, η = 0.4, ε = 0.5,
δ = 0.5, α = 0.5, M = 0.1 and Ds = 0.001.

which is defined as

σ =
γ ∗

0 R∗
2

μ∗D∗
s

=
J

Ds

. (4.6)

When σ is small, surfactant diffusion dominates convection, the surfactant
concentration is nearly uniform and the motion is similar to that occurring under
constant surface tension. Thus, the growth rate is sensitive to the surfactant diffusivity
when J is relatively small. As illustrated in figure 16, the growth rate profiles approach
the curve with a clean interface (M = 0) with an increase in surfactant diffusivity Ds

(or a decrease in σ ).

4.5. Rotation of outer cylinder

In this section, we discuss the influence of the rotation of the outer cylinder on the
flow instability. For the single-fluid Taylor–Couette flow, it is well known that the
rotation of the outer cylinder has a stabilizing effect on either co-rotation or counter-
rotation flow (Sparrow, Munro & Jonsson 1964). However, little attention has been
paid to the stratified Taylor–Couette flow. Figure 17 plots the neutral curves on the
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Re1–Re2 plane. The influences of density and viscosity stratification, surface tension,
Marangoni traction force and Reynolds stress are all considered with parameters
J = 500, η = 0.4, ε = 0.5, α = 0.5, δ = 0.5, M = 0.1 and Ds = 0.001. The plane
is divided into four zones by two neutral branches. The flow contained within zone
I between the upper and lower neutral branches is stable. Zone II is unstable and
corresponds to the interfacial instability caused by surface tension and Marangoni
traction forces. Zone III is also unstable and denotes the flow instability correlated
with viscosity stratification and Reynolds stresses. Zone IV, which demonstrates the
overlapped region between zones II and III, is evidently unstable. In § 2.3, the energy
supplied due to density stratification (I1) is proportional to the shearing velocity of
basic shearing flow at the interface. Thereby, for δ < 1.0, the stabilizing effects of
density stratification are strengthened in the co-rotating state with an increase in
Re2. On the other hand, because energies supplied (I3, I4, and I5) due to viscosity
stratification and Marangoni traction force are proportional to the shearing strain
of basic shearing flow at the interface, the corresponding destabilizing effects on the
flow instability are weakened in the co-rotating state. For this reason, in figure 17,
the lower branch of the neutral curve is descended, with Re2 increasing in the co-
rotating state. As 69.9 <Re2 < 118.0, a fold of the lower branch can be found. This
indicates that there are two stable intervals of Re1 for a given Re2. Figure 18 displays
the corresponding neutral curve in the Re1–k plane with Re2 = 90.0. The lower
branch is associated with axisymmetric long perturbation waves leading to capillary
instability at low Reynolds number Re1 < 35.7. Modes contained within the middle
branch with Reynolds number 55.4 <Re1 < 137.0 correspond to Marangoni instability
induced by surfactant concentration gradient. The upper branch represents the Yih
(n = 3) and Taylor–Couette instability with critical Reynolds number Re1 = 375.0.
Apparently, there are two intervals, 35.7 <Re1 < 55.4 and 137.0 <Re1 < 375.0, within
which the flows are linearly stable for all range of axial wavenumber k. As Re2

increases, the middle branch shrinks and disappears while Re2 = 118.0. On the
contrary, as Re2 decreases, the middle branch expands and joins the lower branch
while Re2 = 69.9.

Another interesting phenomenon worthy to be addressed in figure 17 is zone IV,
which demonstrates the overlapped region of zones II and III, while Re2 < 1.8. The
neutral curve with Re2 = −10.0 is shown in figure 18, with the two disjointed dashed
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lines. As noted above, for the counter-rotation situation, the stabilizing effect of density
stratification is weakened while the destabilizing effects of viscosity stratification and
Marangoni traction force are strengthened simultaneously. The critical Reynolds
number of the lower branch corresponding to stabilize the interfacial instability
increases to Re1 = 194.0. The critical Reynolds number of the upper branch starts
at Re1 = 179.4. Thus, no interval of Re1 for stable flow can be found anymore. The
flow contained in zone IV is then controlled by the superposition of Marangoni and
Taylor–Couette instability mechanisms.

5. Conclusions
This investigation addresses the temporal stability of a pair of radially stratified

immiscible liquids in the annular gap between two concentric cylinders rotating
independently. The interface is occupied by an insoluble surfactant. The stability
determining factors, such as density and viscosity stratification, surface tension,
surfactant concentration and Taylor–Couette shearing stress, are all considered and
investigated by a comprehensive normal-mode linear instability analysis. The energy
analysis is complemented, and a set of energy evolution equations that govern the flow
stability is derived to identify the mechanism driving instability. The interaction of
these instability mechanisms is discussed. The code has been validated by a successful
comparison with the results of previous work without surfactant (Renardy & Joseph
1985).

For all cases with a stationary outer cylinder, at a low rotation Reynolds number
of the inner cylinder, instability due to surface tension referred as capillary instability
is dominant with destabilizing axisymmetric (n = 0) perturbation long waves. The
density stratification without gravity plays a stabilizing role if the denser fluid coats
the outer cylinder (δ = ρ1/ρ2 < 1.0). This stabilizing effect is proportional to the
shearing velocity (uθ ) of basic shearing flow at the interface. A stable interval of
Reynolds number Re1, within which the capillary instability is stabilized due to
density stratification, can be identified. The viscosity stratification, which introduces
interfacial friction instability with the presence of basic shearing flow, is associated
with instability of the non-axisymmetric large azimuthal mode, whereas stabilizing
the axisymmetric mode simultaneously. Hence, an interval of Reynolds number Re1

within which the flow is stable due to the interaction of capillary and interfacial
friction instability can also be determined.

In the presence of a surfactant, Marangoni traction force is induced due to
the gradient of surfactant concentration along the interface. For quiescent basic
state, Marangoni traction force slows down the effects of surface tension, both for
perturbations with axial long wave that they usually destabilize and for those with
axial short wave that they usually stabilize. At non-zero Reynolds number, the basic
shearing flow can rearrange the surfactant distribution and induce Marangoni traction
force to trigger the growth of modes associating with non-axisymmetric (n �= 0) axial
long perturbation wave, referred as Marangoni modes. The onset of Marangoni
instability can be promoted with the interface surface close to the inner cylinder. The
stable interval of the Reynolds number can also be identified when considering the
density and viscosity stratification, which play a role in restraining the capillary and
Marangoni instability.

Remarkable differences have to be pointed out between the co-rotation and counter-
rotation zones. For denser fluid coating the outer cylinder with viscosity stratification,
counter-rotation configurations exhibit a destabilizing role in regard to flow instability
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Figure 19. Sketch of the surfactant interface.

associating with the non-axisymmetric wave leading to Yih and Marangoni instability
mechanisms. The situation is reversed in the co-rotation zone, where the co-rotation
of the outer cylinder plays a role in improving the flow stability.

The final manuscript benefits from comments and suggestions provided by three
referees. In particular, we are indebted to a referee whose comments and questions
have enriched the contents of the paper. This work was supported in part by NSFC
under grants 10772097 and 10972115.

Appendix A. Surfactant convection–diffusion equation
The position of the surfactant interface can be defined with surface function

r = S(θ, z), and the surface surfactant concentration is Γ = Γ (θ, z) in the cylindrical
coordinates. Considering the change of the amount of surfactant ΔNt from time t to
t +Δt contained in the control volume ΔV with boundaries r ∈ [0, ∞), θ ∈ [θ, θ +dθ]
and z ∈ [z, z + dz], seen in figure 19. For small Δt , we have

ΔNt = Δt
∂

∂t
(Γ n · (t × b)dStdSb) + O(Δt2). (A 1)

Here, n is the unit vector outward normal to the surfactant surface, which can be
written as

n =
er − ∂S

S∂θ
eθ − ∂S

∂z
ez√

1 +

(
∂S

S∂θ

)2

+

(
∂S

∂z

)2
=

er − S
′
θ eθ − S

′
zez√

1 + S
′
θ

2
+ S

′
z

2
, (A 2)

where t and b are the tangent vectors

t =
S

′
θ er + eθ√
1 + S

′
θ

2
, b =

S
′
zer + ez√
1 + S

′
z

2
. (A 3)
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Note that dSt and dSb are the side lengths of the surface element

dSt =

√(
1 + S

′
θ

2)
Sdθ, dSb =

√(
1 + S

′
z

2)
dz, (A 4)

where S
′
θ , S

′
z are defined as

S
′

θ =
∂S

S∂θ
, S

′

z =
∂S

∂z
. (A 5)

On the other hand, the flux of surfactant in the azimuthal and axial direction during
the period of Δt can be written as

ΔNθ = ΔtΓ uθ n · (t × b)

√(
1 + S

′
θ

2)
dSb

∣∣∣∣
θ+dθ

− Δt Γ uθ n · (t × b)

√(
1 + S

′
θ

2)
dSb

∣∣∣∣
θ

= Δt
∂

∂θ

[
Γ uθ

√(
1 + S

′
θ

2)n · (t × b)dSb

]
dθ + O(Δθ2, Δt2), (A 6)

ΔNz = ΔtΓ uzn · (t × b)

√(
1 + S

′
z

2)
dSt

∣∣∣∣
z+dz

− Δt Γ uzn · (t × b)

√(
1 + S

′
z

2)
dSt

∣∣∣∣
z

= Δt
∂

∂z

[
Γ uz

√(
1 + S

′
z

2)n · (t × b)dSt

]
dz + O(Δz2, Δt2). (A 7)

If the diffusion of surfactant is considered, there is a corresponding contribution to
the amount of surfactant (ΔNθD and ΔNzD) caused by surfactant diffusion crossing
from the boundary of control volume. These amounts are given by

ΔNθD = Ds(n × b) · ∇sΓ dSb|θ+dθ − Ds(n × b) · ∇sΓ dSb|θ

= Ds

∂

∂θ

[
(n × b) · ∇sΓ

√(
1 + S

′
z

2)
dz

]
dθ + O(Δz2, Δt2), (A 8)

ΔNzD = Ds(n × t) · ∇sΓ dSt |z+dz − Ds(n × t) · ∇sΓ dSt |z

= Ds

∂

∂z

[
(n × t) · ∇sΓ

√(
1 + S

′
θ

2)
Sdθ

]
dz + O(Δθ2, Δt2), (A 9)

where ∇sΓ is defined as the gradient of surfactant concentration along the surface. It
can be written as

∇sΓ =
t√(

1 + S
′
θ

2) ∂Γ

S∂θ
+

b√(
1 + S

′
z

2) ∂Γ

∂z
. (A 10)

According to the conservation of surfactant, we know

ΔNt + ΔNθ + ΔNz = ΔNθD + ΔNzD. (A 11)

Considering the limit Δt → 0, Δθ → 0 and Δz → 0, the surfactant convection–
diffusion equation can be written as

∂

∂t
(Γ SH ) +

∂

∂θ
(uθΓ H ) +

∂

∂z
(uzΓ SH ) = Ds

∂

∂θ

(
H

1 + S
′
θ

2

∂Γ

S∂θ

)

+ Ds

∂

∂z

(
SH

1 + S
′
z

2

∂Γ

∂z

)
, (A 12)
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where H is defined as

H =

√
1 + S

′
θ

2
+ S

′
z

2
. (A 13)

Ds = D∗
s ρ

∗
2/μ

∗
2 is the dimensionless diffusivity of the surfactant.

Appendix B. Balance of stress on the surfactant interface
The stress balances at the interface are

[[p I − τ ]] · (t × b) S

√
1 + S

′
θ

2
√

1 + S
′
z

2
= J

∂

[
Γ (n × t) S
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′
θ

2

]
∂z

+ J

∂

[
Γ (b × n)

√
1 + S

′
z

2

]
∂θ

, (B 1)

where [[ · ]] = ( · )2 − ( · )1 defines the jump notation and J is the parameter used to
describe surface tension. Equation (B 1) denotes the balance of pressure, viscosity
stress and surface tension at the surfactant interface, which has three components
along the cylindrical coordinate directions:

(i) r direction:

1
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(ii) θ direction:
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(iii) z direction:
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Substituting (2.11), (2.16) and (2.17) into the above equations, and linearizing both
sides at the location of the unperturbed interface, r = ε, the linearized dynamic
conditions on the surfactant interface represented by (2.21a)–(2.21c) can be obtained.



384 J. Peng and K. Q. Zhu

REFERENCES

Baier, G. & Graham, M. D. 1998 Two-fluid Taylor–Couette flow: experiments and linear theory
for immiscible liquids between corotating cylinders. Phys. Fluids 10 (12), 3045.

Baier, G. & Graham, M. D. 2000 Two-fluid Taylor–Couette flow with countercurrent axial flow:
linear theory for immiscible liquids between corotating cylinders. Phys. Fluids 12 (2), 294.

Baier, G., Graham, M. D. & Lightfoot, E. N. 2000 Mass transport in a novel two-fluid Taylor
vortex extractor. AIChE J. 46, 2395.

Blyth, M. G., Luo, H. & Pozrikidis, C. 2006 Stability of axisymmetric core-annular flow in the
presence of an insoluble surfactant. J. Fluid Mech. 548, 207.

Blyth, M. G. & Pozrikidis, C. 2004a Effect of surfactants on the stability of two-layer channel
flow. J. Fluid Mech. 505, 59.

Blyth, M. G. & Pozrikidis, C. 2004b Effect of inertia on the Marangoni instability of two-layer
channel flow. Part II. Normal-mode analysis. J. Engng Math. 50, 329.

Carroll, B. & Lucassen, J. 1974 Effect of surface dynamics on the process of droplet formation
from supported and free liquid cylinders. J. Chem. Soc. Faraday Trans. 70, 1228.

Cassidy, K. J., Halpern, D. Ressler, B. G. & Grptberg, J. B. 1999 Surfactant effects in model
airway closure experiments. J. Appl. Physiol. 87, 415.

Charru, F. & Hinch, E. J. 2000 Phase diagram of interfacial instabilities in a two-layer Couette
flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195.

Diprima, R. C. & Swinney, H. L. 1981 Instability and transition in flow between concentric rotating
cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence. Springer.

Edwards, D., Brenner, H. & Wasan, D. 1991 Interfacial Transport Processes and Rheology.
Butterworth-Heinemann.

Frenkel, A. & Halpern, D. 2002 Stokes-flow instability due to interfacial surfactant. Phys. Fluids
14, L45.

Govindarajan, R. 2004 Effect of miscibility on the linear instability of two-fluid channel flow. Intl
J. Multiphase Flow 30, 1177.

Halpern, D. & Frenkel, A. 2003 Destabilization of a creeping flow by interfacial surfactant: linear
theory extended to all wavenumbers. J. Fluid Mech. 485, 191.

Halpern, D. & Grotberg, J. B. 1993 Surfactant effects on fluid elastic instabilities of liquid lined
flexible tubes: a model of airway closure. Trans. ASME: J. Biomech. Engng 115, 271.

Hooper, A. P. & Boyd, W. C. C. 1983 Shear-flow instability at the interface between two viscous
fluids. J. Fluid Mech. 128, 507.

Hu, H. H. & Joseph, D. D. 1989 Lubricated pipeling: stability of core-annular flow. Part 2. J. Fluid
Mech. 205, 359.

Joseph, D. D., Nguyen, K. & Beavers, G. S. 1984 Nonuniqueness and stability of the configuration
of flow of immiscible fluids with different viscosities. J. Fluid Mech. 141, 319.

Joseph, D. D. & Renardy, Y. Y. 1993 Fundamentals of Two-Fluid Dynamics. Part I. Mathematical
Theory and Applications. Springer.

Joseph, D. D., Renardy, Y., Renardy, M. & Nguyen, K. 1985 Stability of rigid motions and rollers
in bicomponent flows of immiscible liquids. J. Fluid Mech. 153, 151.

Khorrami, M. R. 1991 A Chebyshev spectral collocation method using a staggered grid for the
stability of cylinder flows. Intl J. Numer. Meth. Fluids 12, 825.

Kull, H. J. 1991 Theory of the Rayleigh–Taylor instability. Phys. Rep. 206 (5), 197.

Kwak, S. & Pozrikidis, C. 2001 Effect of surfactants on the instability of a liquid thread or annular
layer. Part I. Quiescent fluids. Intl J. Multiphase Flow 27, 1.

Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of
dilute emulsions in Stokes flow. J. Fluid Mech. 341, 165.

Luo, H. & Pozrikidis, C. 2006 Shear-driven and channel flow of a liquid film over a corrugated or
indented wall. J. Fluid Mech. 556, 167.

Newhouse, L. A. & Pozrikidis, C. 1992 The capillary instability of annular layers and liquid
threads. J. Fluid Mech. 242, 193.

Otis, D. R., Johnson, M., Pedley, T. J. & Kamm, R. D. 1993 Role of pulmonary surfactant in
airway closure: a computational study. J. Appl. Physiol. 75, 1323.

Renardy, Y. & Joseph, D. D. 1985 Couette flow of two fluids between concentric cylinders. J. Fluid
Mech. 150, 381.



Instability of two-fluid Taylor–Couette flow 385

Schneyer, G. P. & Berger, S. A. 1971 Linear stability of the dissipative, two-fluid, cylindrical
Couette problem. Part I. The stably stratified hydrodynamic problem. J. Fluid Mech. 45, 91.

Sharp, D. H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12, 3.

Sparrow, E. M., Munro, W. D. & Jonsson, V. K. 1964 Instability of the flow between rotating
cylinders: the wide-gap problem. J. Fluid Mech. 20, 35.

Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil.
Trans. R. Soc. Lond. A 223, 289.

Vedantam, S., Joshi, J. B. & Koganti, S. B. 2006 Three-dimensional CFD simulation of stratified
two-fluid Taylor–Couette flow. Can. J. Chem. Engng 48 (3), 279.

Wei, H. H. 2005 On the flow-induced Marangoni instability due to the presence of surfactant.
J. Fluid Mech. 544, 173.

Wei, H. H. & Rumschitzki, D. S. 2005 The effects of insoluble surfactants on the linear stability
of a core-annular flow. J. Fluid Mech. 541, 115.

Yarin, A. L., Gelfgat, A. Yu & Bar-Yoseph, P. Z. 2002 Enhancement of mass transfer in a
two-layer Taylor–Couette apparatus with axial flow. Intl J. Heat Mass Transfer. 45, 555.

Yih, C. S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27, 337.


